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Abstract 

The rigid-bond condition for harmonic thermal par- 
ameters states that the difference of the mean-square 
displacements of atoms A and B along the covalent 
bond A - B  is negligible. In this paper, the correspond- 
ing condition for non-bonded intramolecular dis- 
tances is called a rigid link. Rigid-body motion 
according to the TLS formalism requires all 
intramolecular links to be rigid. Conversely, a corn- 
piece set of rigid links is not necessarily equivalent 
to rigid-body motion. An algorithm is presented for 
the determination of the maximum number QN of 
independent rigid links of an N-atom molecule. In 
general for site symmetry 1, QN = N - 1  for linear 
and 3 N - 6  for planar molecules. For three- 
dimensional molecules, QN = N ( N  - 1)/2, N -< 8 and 
6 N - 2 0 ,  N->8. For particular geometries, QN may 
be smaller. For many molecules, QN rigid links are 
equivalent to rigid-body motion. Notable exceptions 
are most linear and planar molecules, and all 
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molecules with six or seven atoms. Higher site sym- 
metries reduce and often eliminate these differences 
between rigid links and rigid-body motion. The use 
of rigid-link restraints in crystallographic least 
squares is recommended. They provide a computa- 
tionally simple means of relaxing the constraints 
imposed on the displacement parameters by the TLS 
model for any molecular site symmetry. 

Introduction 

For many chemical bonds, the contribution of bond- 
stretching vibrations to the atomic thermal displace- 
ment parameters can be expected to be relatively 
small in comparison with angle bending, torsional 
and intermolecular vibrations. This is the basis of the 
rigid-bond criterion for the physical soundness of 
independently refined anisotropic displacement par- 
ameters (Hirshfeld, 1976). If we define the coordinate 
system by the unit translations of the crystal lattice 

O 1987 International Union of Crystallography 



J.-J. DiDISHEIM AND D. SCHWARZENBACH 227 

ai, the harmonic-temperature-factor expression is 
given by 

T=exp( -27r2y .  U#h, hj)=exp (-2"rr2hrUh), (1) 

and the mean-square displacement (m.s.d.), i.e. the 
second moment of the probability density function 
(p.d.f.), along the unit vector s = ~ s~ai is 

z 2 ( s ) = s r M U M s = s * r U s  *, s * = M s = ~  s*a *i, (2) 

M being the metric tensor M~=a~aj and a *i the 
reciprocal coordinate system. In a unitary system, 
M U = 8 U. The rigid-bond criterion stipulates that the 
m.s.d.'s of atoms A and B along a covalent bond A - B  
should be approximately equal, 

z2(A ~ B) -~ z2(B ~ A). (3) 

This is a necessary but not a sufficient condition for 
a bond to be undeformable. It has been found to hold 
for numerous structures (Trueblood & Dunitz, 1983), 
and may apply also to non-bonded atoms within a 
molecule (Rosenfield, Trueblood & Dunitz, 1978). 
This observation leads naturally to the idea, already 
proposed by Rollett (1970), of introducing rigid 
bonds as constraints or restraints in the least-squares 
refinement. Related to this is the concept of riding 
motion where the difference of the m.s.d.'s is kept 
finite (Konnert & Hendrickson, 1980). The generaliz- 
ation for anharmonic displacement parameters results 
in conditions analogous to (3) for the higher moments 
of the p.d.f.'s. For a Gram-Charlier series expansion 
(Johnson & Levy, 1974), these are 

z3(s) = E ~ , jko ,o ,o ,  oi oj Ok, (4) 
Z4(S) = E c#l'ts*s~S*k S* + 3[Z2(S)] 2. 

The advantages of constrained refinements are 
well-known (Pawley, 1972). Since we may want to 
impose the rigid-bond conditicn (3) between two 
atoms which are not covalently bonded, we refer in 
the following to rigid-link constraints. We prefer not 
to refer to distances in this context because such 
constraints involve only displacement parameters, 
and not atomic positions. Conditions imposed on the 
length of interatomic vectors and on angles are called 
shape constraints. These are completely independent 
of rigid-link constraints. 

The TLS formalism of Schomaker & Trueblood 
(1968) is widely used to describe the rigid-body 
motions of molecules. It is easily shown that in a 
rigid-body molecule satisfying the TLS equations all 
bonded and non-bonded interatomic links are rigid. 
In the following only unitary coordinate systems and 
a matrix notation as in Johnson & Levy (1974) are 
used. The anisotropic displacement tensor of an atom 
at position rm i s  

U ( m ) = T + R r , , L R ~ + R m S + S r R ~ .  (5) 

The antisymmetric matrix Rm is used to express the 
vector product in matrix notation, i.e. R m r = r x r m .  
The m.s.d, of atom A along the link d = r e -  rA is 

zE(.A --> B )  = (dTd)-l[dTTd + vrLv + vrSd + drSrv] ,  

(6) 
where v = R~d = R r d  = r A × rB. This is invariant when 
A and B are interchanged and the link is thus rigid. 
Note that surfaces representing the root-m.s.d, are 
not identical with surfaces of constant probability 
(Nelmes, 1969). The radius vectors of the thermal 
ellipsoids of two atoms along a rigid link are in general 
not of equal length. 

Rigid-link and TLS constraints 

The appropriateness of the TLS model is often dis- 
cussed in terms of rigid bonds and rigid angles, i.e. 
by rigid links in general (Rosenfield, Trueblood & 
Dunitz, 1978). In the following, we address therefore 
the question whether rigid-body molecules can be 
defined by rigid-link constraints. We will clarify the 
differences between the two concepts by showing that 
in general the rigid-link conditions are not linearly 
independent, and that the TLS model may include 
additional constraints which cannot be expressed in 
terms of rigid links. These constraints may be difficult 
to interpret or justify with physical arguments. The 
problem will first be solved for molecules with site 
symmetry 1. The T, L and S tensors are usually 
obtained by a least-squares fit from the individual 
atomic harmonic displacement tensors using (5). 
Alternatively, they may be refined directly with 
respect to the X-ray diffraction data (Pawley, 1972). 
The latter procedure is equivalent to introducing a 
set of linear constraints between the UO(m). In par- 
ticular, if there are t independent TLS parameters for 
a molecule comprising N atoms, the number of these 
linear TLS constraints is qN = 6N - t. It is well known 
that the trace of S is indeterminate, and that a singu- 
larity will occur if all atoms of a rigid body lie on a 
conic section (Schomaker & Trueblood, 1968). Apart 
from this, there appears to exist no general method 
for the determination of t. The values reported in 
Table 1 have been obtained by explicit and tedious 
analyses of (5) for particular geometries. Results have 
been checked with numerical examples. By virtue of 
(6), a rigid-body molecule necessarily has N ( N -  
1)/2 rigid links, each of which represents a linear 
relation between the U°(m). These relations form a 
6N  times N ( N - 1 ) / 2  constraint matrix. Let QN be 
its rank. Since all rigid-link conditions must be 
equivalent to TLS constraints, but the reverse is not 
implied by (6), it follows that 

° QN<--qN, (7) 

i.e. a full set of rigid links represents a constraint 
equivalent to, or weaker than, the TLS model. 
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( a ) Linear molecules 

Without loss of generality, we may align the 
molecule along the x axis. The atomic-displacement 
tensors comprise then N terms U~(m) describing 
the in-line movements along x, and 5N out-of-line 
terms. Likewise, TLS has one in-line term T t~ and 
13 out-of-line terms (ten for N = 2). Obviously, QN = 
N - 1 ,  since Ull(m)= Ull(n) and Ull(n)= Ull(p) 
implies U~(m)= U~(p). With respect to the in-line 
terms, the rigid links are therefore equivalent to TLS. 
This is not the case for the molecule imbedded in 
three-dimensional space. There are 5 N -  13 TLS con- 
straints between out-of-plane U U terms which do not 
represent rigid links (Table 1). These are related to 
bending modes. Only for the dumbbell N = 2 are TLS 
and the rigid link equivalent. 

( b ) Planar molecules 

We may place the molecule in the xy plane. The 
atomic-displacement tensors then comprise 3N in- 
plane terms u~t(m), U22(m) and U~2(m), and 3N 
out-of-plane t e r m s  u l 3 ( m ) ,  U 2 3 ( m ) a n d  U 3 3 ( m ) .  

Likewise, TLS for N---3 has six in-plane terms T 1~ 
T 22, T 12, L 33, S 31 and S 32, and t - 6  out-of-plane 
terms. Rigid-link conditions exist only between in- 
plane terms, and therefore Q)v-< 3 N - 6  in analogy 
to (7). Suppose that we have identified an N-atom 
molecular fragment where a complete set of rigid 
links is equivalent to the TLS constraints, i.e. QN = 
3 N - 6. If we add an ( N + 1)th atom to this fragment, 
the number of in-plane displacement parameters is 
increased by the three in-plane U°(N+ 1), and the 
total number of links by N. These new links are 
represented by N linear equations, calculated by 
using (2) and (3), between the new U ° ( N + I )  and 
the UiJ(1) to UU(N) of the original fragment: 

2 2 

F. ~., s*~(N+l ,m)s~(N+l ,m)  
i=1  j = l  

[UiJ(N+l) -U°(m)]=O,  l<_m<_N. (3') 

The equations of any three non-collinear links are 
linearly independent. If three such links can be found, 
the U'J(N + 1) can be eliminated from the remaining 
N -  3 equations which are thus transformed into N -  
3 new equations between the U'J(1) to U'J(N). Since 
they have been derived from rigid-link equations, they 
must be equivalent to a combination of TLS con- 
straints. But QN is already at its maximal value. The 
N - 3  new equations are therefore redundant and 
QN+1 = 3(N + 1) - 6 .  The three rigid links in a triangle 
are linearly independent, thus Q 3 -  q3 = 3 (Table 1), 
and the rigid links are equivalent to TLS. By success- 
ively adding atoms with three non-collinear links, 
molecules of increasing complexity can be construc- 
ted possessing in-plane displacement parameters of 
a rigid body. For N-> 5, TLS gives additional rela- 

Table 1. Comparison of TLS and rigid-link constraints 

D e f i n i t i o n s :  t = n u m b e r  o f  i n d e p e n d e n t  T L S  t e rms ;  q = 6 N  - t = 
n u m b e r  o f  T L S  c o n s t r a i n t s  b e t w e e n  the  Be(k); Q = m a x i m u m  
n u m b e r  o f  i n d e p e n d e n t  r i g i d - l i n k  c o n s t r a i n t s ,  p = q - Q = n u m b e r  
o f  T L S - o n l y  c o n s t r a i n t s .  T h e  m o l e c u l e  o c c u p i e s  a s i te  wi th  sym-  

m e t r y  1. 

G e o m e t r y  o f  N - a t o m  N t q Q p 
m o l e c u l e  

Linear 2 11 1 1 0 
Linear ->3 14 6 N  - 14 N - 1 5 N  - 13 
Triangle 3 15 3 3 0 
Quadrangle 4 18 6 6 0 
Planar N-gon* ->5 19 6 N  - 19 3N - 6 3N - 13 
Planar N-gon t  ->6 20 6 N - 2 0  3N - 6  3N - 14 
N -  1 atoms collinear ->4 17 6 N -  17 2 N - 3  4 N -  14 
Tetrahedron 4 ! 8 6 6 0 
Three-dimensional~ 5 20 10 10 0 
Three-dimensional~t 6 20 16 15 1 
Three-dimensional~: 7 20 22 21 1 
Three-dimensionaKt 8 20 28 28 0 
Three-dimensionai~: -> 8 20 6 N - 20 6 N - 20 0 
Centred octahedron 7 20 22 18 4 
Centred cube 9 20 34 32 2 
Pyramid on (N - l )gon ---5 20 6 N - 2 0  4 N - 1 0  2 N - 1 0  
Bipyramid on 

( N - 2 ) g o n  ->5 20 6 N - 2 0  5 N - 1 5  N - 5  
Two non-intersecting 

lines ->5 19 6 N - 1 9  4 N - I I  2 N - 8  

* Atoms lie on a conic section, e.g. regular N-gon. 
t Atoms do not lie on a conic section. 
~: Except some particular geometries. 

tions between out-of-plane U 0 terms which eliminate 
bending movements. Thus, the following recipe can 
be used to determine the number QN of independent 
rigid links of a planar molecule: 

(i) choose three non-collinear atoms (Q3 = 3), or 
four atoms forming a quadrangle (Q4 = 6); 

(ii) add consecutively atoms having three non- 
collinear links to the previously chosen atoms, thus 
QN = QN-I+3;  

(iii) if there are no more atoms as in (ii), add the 
remaining atoms in less-general positions, increasing 
QN by 2. 

These rules always give a set of QN independent 
links, but they do not permit one to enumerate all 
possible such sets (see examples below). 

For all but one types of planar molecules, QN = 
3 N - 6 (Table 1). This is also the number of indepen- 
dent distances to be specified for the rigid-body shape 
constraint of a two- or three-dimensional N-atom 
molecule imbedded in three-dimensional space, or 
the number of its internal degrees of freedom. In this 
case, however, the constraint equations are quadratic 
and this introduces some complications not to be 
discussed here. The above rules (i) and (ii) can 
nevertheless also be used to construct shape- 
constrained three-dimensional molecules, starting 
with the six distances of a four-atom fragment. Again, 
the rules do not permit one to enumerate all possible 
sets of distances. In particular, the rigidity of triangu- 
lated convex polyhedra (Loeb, 1976), e.g. an octahe- 
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dron defined by its 12 edges, cannot be demonstrated 
in this way. 

(c) Three-dimensional molecules 

Much of the procedure described for planar 
molecules is also valid in three dimensions. In general, 
there are 20 determinable independent TLS terms, 
resulting in qN = 6N -20 .  Suppose that QN = qN for 
an N-atom fragment with N -> 6. An additional ( N +  
1)th atom adds six new U°(N+ 1) terms and N new 
links. If the atom is in a general enough position, we 
may choose six independent ones among: them in 
such a way that no more than three are coplanar and 
none are collinear. These can be used to eliminate 
all UO(N+ 1) from the remaining N - 6  equations. 
The new equations between the UiJ(1) to UU(N) thus 
created must be redundant because the N-atom rigid 
body is completely characterized by the QN 
equations. It is also evident by analogous reasoning" 
that all links are in general independent for N = 3 to 
7, i.e. QN = N ( N - 1 ) / 2 .  For N = 4  and 5, we obtain 
QN = qN (Table 1). For N = 6 and 7, however, there 
are not enough links to specify completely a rigid 
body, and TLS implies an additional constraint. Tak- 
ing as an example a regular octahedron with atoms 
at +(x00, 0x0, 00x), this constraint has been identified 
by explicitly comparing the TLS constraints obtained 
from (5) with the rigid-link conditions. It 
reads U23(x00) + U13(0x0) + U 1 2 ( O O x )  "-- U23(x00) + 
U~3(0g0) + u~E(00g). Therefore, we cannot predict 
Q8 from Q7 using the previous arguments. Numerical 
calculation shows, however, that by adding an eighth 
atom to a seven-atom molecule in the same way as 
discussed above, all seven new links are independent, 
and in fact Qs = q8. This is true, for example, for all 
kinds of distorted cubes, for all configurations of 
ethane-like molecules and for coordinates obtained 
with a random-number generator. The anomaly for 
N -- 6 and 7 appears to be connected with the indeter- 
minate trace of S of the TLS model. If there were in 
general 21, and not just 20, determinable TLS terms, 
the number of TLS constraints would be q~v = 
6 N - 2 1 .  The procedure to find QN would then be 
identical with that to be used for shape constraints 
of five- and six-dimensional molecules imbedded in 
six-dimensional space. 

The procedure for choosing independent links 
closely follows that proposed for planar molecules. 
It starts by choosing four atoms of which no more 
than two are collinear (04 = 6). Adding a fifth, sixth, 
seventh and eighth atom in general positions as 
described above adds four, five, six and seven 
independent links respectively. From there on, every 
additional atom in a general position adds six 
independent links. Atoms in less-general positions 
increasing QN by less than six are added at the end 
of the procedure. 

( d) Molecules with site symmetry higher than 1 

Let the positions and displacement tensors of two 
atoms related by a point-symmetry operation A be 
(r, U) and (At, AUA r) respectively. The rigid-link 
condition along A t -  r = (A - I ) r  is then 

r T [ ( A T - I ) U ( A - I ) - ( A - I ) U ( A T - I ) ] r = O ,  (8) 

I being the identity matrix, and A -1 = A r. Introducing 
for A an n-fold rotation axis n or rotoinversion axis 

along z gives 

n: sin ~o(cos ~o- 1){ }=0,  (9a) 

~: sin ~o[(cos tp+ 1){ }+2r3(r2 U~3-r~U23)]=O, 

(9b) 

{ } = { ( U H -  U22)rlr2- U~2(r~-r2)}, q~=2cr/n. 

From this, the following implications of symmetry 
are derived: 

(i) A T= A is a solution of (8) and (9), indepen- 
dently of U. Thus, links between two atoms related 
by 1, 2 or m are always rigid. This is also the case 
for atoms related through the centre of a rotoinversion 
axis, specifically for atoms located on a 4 axis ( r~-  
rE=0 ) . 

(ii) For q~ # 0 or ~r, and 1"3 = 0 in (9b), a ~p-indepen- 
dent relation between the U U is obtained. Thus, all 
links of a regular planar n-gon generated by an n or 

axis are rigid if one of the edges is specified to be 
rigid. This is obvious for triangles and squares. In a 
hexagon, a rigid link between nearest-neighbour 
atoms related by a sixfold rotation implies rigid links 
between next-nearest neighbours related by a three- 
fold rotation. The eigenvectors of the displacement 
tensor U ° (i,j = 1, 2) in the plane of the n-gon are 
then parallel and perpendicular to the radius vector 
(rlr20). 

(iii) If (9a) is satisfied, the part containing { } in 
(9b) is also zero independently of ~0. Therefore, only 
two rigid-link conditions of a set of equivalent atoms 
(general orbit) generated by a rotation axis n parallel 
to a rotoinversion axis r~ (n, m -> 3) are independent. 
This is obvious for the groups 3, 6 and 4/m, but 
non-trivial for 6 /m where rigid links between nearest- 
neighbour atoms generated by operations 6 and 
imply rigid links also between next-nearest neigh- 
bours generated by 3 and 6. One of the eigenvectors 
of the displacement tensor U is then perpendicular 
to the plane formed by the n, r~ axes and the atomic 
position vector r. 

(iv) It can be shown by tedious algebra that only 
four rigid-link conditions of a set of equivalent atoms 
(general orbit) generated by any of the cubic point 
groups are independent. These may be chosen 
between atoms generated by the four threefold axes, 
namely from rl/'2/'3 to r3 r~ r2,/'3 rl r2, r3 rl r 2 and r3 rt r2, 
respectively. The displacement tensor U is then 
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cylindrically symmetric, represented by an ellipsoid 
of revolution with axis r. 

These symmetry implications permit one to identify 
for all sets of equivalent atoms, i.e. for general as 
well as for special orbits, the links which may be 
independently specified as rigid. For general orbits 
the number of such links is 0 for the groups 1, 1, 2, 
m, 2/m, 222, mm2, mmm; one for the groups 4, ~,, 
422, 4mm, ~,2m, 3, 32, 3m, 6, 622, 6mm; two for the 
groups 4/m, 4/mmm, 3, 3m, 6, 6/m, 6m2, 6/mmm; 
four for the cubic groups. These numbers are smaller 
for special orbits. Orbits situated on the diagonal 
mirror planes of ~,3m and m3m, for example, have 
only the two independent links from r~ r~ r 3 to r 3 rl ri 
and ~3 ~1 r~, respectively, the other two links of (iv) 
being perpendicular to mirror planes. 

In addition, molecular site symmetry may result in 
(v) symmetrically equivalent links rm- rn  and 

A(r , , , - rn) ,  where m and n are inequivalent atoms, 
and 

(vi) a reduction of the number of TLS-only con- 
straints. 

The maximum number and possible choice of 
independent rigid links for molecules containing 
inequivalent atoms is easily obtained with the rules 
given in (b) and (c), and taking into account the 
implications of symmetry. The number of indepen- 
dent TLS terms can be obtained from Schomaker & 
Trueblood (1968), except  for special geometries 
which require an explicit analysis of (5). The number 
of independent U ° terms is obtained in the usual way 
from the site symmetries of the individual atoms. 
From this, the number of TLS-only constraints is 
determined. 

( e ) Examples (Table 1) 

In the following the molecular site symmetry is 
assumed to be 1 unless specified otherwise. The inter- 
es ted reader is invited to verify the examples by 
marking the links to be rigid in a sketch of the 
molecule. We do not publish such figures because 
they are constantly evolving during the assignment 
of links. 

Planar hexagon, N = 6. There are 15 links, viz six 
edges, six short diagonals spanning one corner and 
three long diagonals spanning two corners. Three of 

t h e m a r e r e d u n d a n t s i n c e  Q6=12. Thereare  (1~)  

ways of choosing 12 links out of 15, 50 of which 
cannot be transformed into each other by a permuta- 
tion of the comers. Of these, 39 can be constructed 
by the procedure given above. Numerical calculation 
shows that the links of three others are also linearly 
independent. The remaining eight combinations of 
12 links each only represent 11 independent 
equations. Included among these eight cases is the 
most symmetrical choice of links, namely the six edges 

and the six short diagonals. For a discussion of the 
effects of molecular site symmetry, a coordinate sys- 
tem is chosen with x through a corner, y through an 
edge and z perpendicular to the plane of the hexagon. 
Since the atoms lie on a conic section, out-of-plane 
TLS terms from Table 4 of Schomaker & Trueblood 
(1968) must be reduced by 1. Site symmetry l m l  
makes two short diagonals parallel to y rigid, and 
Q6 = 6. In plane, there are indeed four TLS and ten 
U q terms. Out of plane, there are seven TLS and ten 
U ° terms, and thus three TLS-only constraints as 
compared with five for symmetry 1. For m 11 and 11 m 
two and one TLS-only constraints are obtained 
respectively. Finally, for the symmetries 112/m, m 2 m, 
6 and their supergroups,there remain no TLS-only 
constraints. The groups 3m, 622, 6mm and 6/mmm 
imply all links to be rigid since every one of them is 
perpendicular to a mirror plane or a twofold axis. 

Centred octahedron, N = 7. The centring atom adds 
only three independent links to the octahedron with 
Q6 = 15. Therefore Q7 = 18, and there are no rigid-link 
conditions for U~2(7), U13(7) and U23(7). Displacing 
the centring atom along z reduces the maximum 
molecular site symmetry to 4mm and gives Q7 = 20 
with no rigid-link condition for U12(7). The TLS-only 
constraint of the simple octahedron mentioned in (c) 
is obeyed independently of the U ° for the site sym- 
metries 1, m . .  , . .  2, 4 . .  and their supergroups [orien- 
ted site symmetry symbols are explained in Inter- 
national Tables for Crystallography (1983)]. The addi- 
tional TLS-only constraints of the centred octahedron 
are obeyed if U ° ( 7 ) = 0  for i~ j ,  as is the case e.g. 
for mmm. . .  All links of the simple octahedron are 
rigid for the groups 3m, 432, m3m and ~,3m; for ~,3m 
there also exists a TLS-only constraint. In the centred 
octahedron possessing one of these symmetries, one 
rigid link can be specified from the centre to a summit. 

Pentagonal pyramid, N = 6. The apical and four of 
the equatorial atoms form a distorted five-atom 
pyramid with Q5 = 10. The last equatorial atom adds 
only four, and not five independent links, namely 
three in the equator and one to the apical atom; thus 
06 = 14. By adding additional atoms in the equator, 
the number of independent links for a general 
pyramid based on an ( N - 1 ) g o n  is easily shown to 
be QN = 4 N - 1 0 .  For site symmetry m, the number 
of TLS-only constraints is reduced to N - 5, indepen- 
dently of the orientation of the mirror plane and the 
parity of N. The expression for a bipyramid based 
on an (N  - 2)gon is obtained by starting with the two 
apical and four of the equatorial atoms, for which 
Q6 = 15. A mirror plane parallel to the ( N - 2 ) g o n  
eliminates all TLS-only constraints. 

Two non-intersecting skew lines, each one occupied 
by at least three atoms. Starting with four atoms, two 
on each line, we obtain Q4 = 6. A fifth atom adds 
three independent links, Q5 =9. This configuration 
corresponds to a tetrahedron with one centred edge 
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(t = 19). Adding a sixth atom not in line with the fifth 
gives four more independent links, three of which are 
coplanar. Every additional atom added to this 
configuration on either of the lines adds four indepen- 
dent links, resulting in QN = 4 N -  11. For a tetrahe- 
dron centred on two opposite edges and possessing 
site symmetry 42m, t = 5 and Q6=2. Adding four 
symmetry-equivalent atoms on these edges increases 
Q by 3, and the number of U ° terms by four. The 
number of TLS-only constraints is thus n - 1 for N = 
4n+2.  

Concluding remarks 

It is often useful to impose constraints or restraints 
on the structural parameters during refinement with 
respect to structure factors. This is particularly advis- 
able for parameters whose values are more easily 
obtained from a more sophisticated model than from 
an unconstrained least-squares refinement. Thus, the 
rigid-body model might be imposed on the harmonic 
displacement parameters, but even molecules of only 
medium complexity are hardly ever rigid, and metal- 
ligand bonds may be particularly non-rigid 
(Ammeter, Biirgi, Gamp, Meyer-Sandrin & Jensen, 
1979). Rigid links in the form of restraints provide a 
computationally simpler means to relax the TLS con- 
ditions during structure refinement than a segmented- 
body model or the introduction of some internal 
molecular vibrations. They may be limited to the 
covalent bonds only, where they may in fact be well 
justified. They can, on the other hand, be applied also 
to links between non-bonded atoms. For many three- 
dimensional molecules, and particularly for the more 
complex ones, they can be made equivalent to the 
full TLS model, and cover thus the whole domain 
between individual rigid bonds and a rigid body. 
There are molecules where the rigid-link constraints 
are always weaker than TLS, but the former are more 
easily justified by physical arguments than the TLS- 
only constraints. Thus for planar molecules out-of- 
plane internal vibrations are probably less negligible 
than in-plane ones. For small molecules with less than 
five atoms, the rigid-link constraints can almost 
always be made equivalent to TLS, and are more 
easily imposed than the latter. In the case of molecules 
with site symmetry higher than 1, it is simply necessary 
to identify the non-trivial and symmetrically 
inequivalent links, in order not to specify the same 
condition more than once. This can be done by hand, 
or accomplished by the program. All other implica- 
tions of symmetry are taken care of automatically by 
a standard least-squares program. The results of the 
restrained refinement may be subsequently expressed 
in terms of rigid-body TLS or segmented-body par- 
ameters. 

The rules discussed in this paper allow one to 
determine the number of independent links QN, and 

thus indicate to what extent a rigid-link model can 
be made equivalent to TLS. The numerically most 
advantageous choice of the independent links rep- 
resents a more difficult problem which depends on 
the details of the molecular geometry. It is evident 
that a near-violation of our above rules, e.g. the choice 
of nearly collinear links, should be avoided. The 
independent links obtained by our rules are usually 
not disposed according to the symmetry of the 
molecule, as has been illustrated by the regular 
hexagon. If all links, including the redundant ones, 
are specified to be rigid in a restrained refinement, 
the numerical problems disappear. The choice of the 
weights should then also be influenced by the pres- 
ence of these redundant links. 

The introduction of rigid links in the form of 
restraints in a crystallographic least-squares program 
is a relatively easy programming task. Coupled with 
shape constraints, they allow the refinement of groups 
of atoms, e.g. phenyl rings, on the basis of a reason- 
able physical model. We prefer this scheme to a group 
refinement with Euler angles (Doedens, 1970) and 
TLS parameters. We also recommend it for disor- 
dered molecules (Biinzli, Leonard, Plancherel & 
Chapuis, 1986) where the refinement of split atoms 
with isotropic displacement parameters is usually not 
justifiable. The relevant modifications of our local 
version of the X R A Y  system (Stewart, Kruger, 
Ammon, Dickinson & Hall, 1972) have been tested 
with the 14-atom molecule boratrantrione (2,8,9- 
trioxa - 5 - aza- 1 - borabi cycloundecane - 3,7,10- trione), 
C6H6BNO6, Q14=64 (Biirgi, Delley, Hauser, 
Moeckli, Schwarzenbach & Thong, 1987; Biirgi & 
Hummel, 1987). The displacement parameters 
obtained with a complete set of rigid-link restraints 
equivalent to TLS satisfied (5) perfectly. 

We thank Professor H.-B. Biirgi for analysing our 
displacement parameters with the program T H M V 9  
(Trueblood, 1985). The project is supported by the 
Swiss National Science Foundation, grant 2.270-0.84. 
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Abstract 

The connection between the rotation matrix in 
hexagonal lattice coordinates and an angle-axis quad- 
ruple is given. The multiplication law of quadruples 
is derived. It corresponds to multiplying two matrices 
and gives the effect of two successive rotations. The 
relation is given between two quadruples that describe 
the same relative orientation of two lattices owing to 
their hexagonal symmetry; a unique standard descrip- 
tion of the relative orientation is proposed. The 
restrictions satisfied by rotations generating coin- 
cidence site lattices (CSL's) are derived for any value 
of the axial ratio p = c~ a. It is shown that the law for 
cubic lattices, where the multiplicity 2 of the CSL is 
equal to the lowest common denominator of the ele- 
ments of the rotation matrix, does not always hold 
for hexagonal lattices. A generalization of this law to 
lattices of arbitrary symmetry is given and another, 
quicker, method of determining £ for hexagonal lat- 
tices is derived. Finally, convenient algorithms are 
described for determining bases of the CSL and the 
DSC lattice. 

1. Introduction 

Consider a boundary between two grains of the same 
homogeneous phase. The boundary energy per unit 
area depends on the relative orientation of the two 
grains. It has often been observed that this energy 
has a relative minimum if a significant fraction 1/~ 
of symmetry translations of one grain are simul- 
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taneously symmetry translations of the other. The 
lattice formed by the common translations is called 
the coincidence site lattice (CSL), ~ its multiplicity. 
The relative orientation of the two grains can be 
described by a rotation mapping one set of symmetry 
translations onto the other. 

Motivated by investigations into the frequency with 
which different relative orientations of grains occur 
in hexagonal materials, considerable attention has 
been given to coincidence rotations, i.e. rotations 
generating CSL's in hexagonal lattices (Warrington, 
1975; Fortes & Smith, 1976; Bonnet, Cousineau & 
Warrington, 1981; Hag~ge, Nouet & Delavignette, 
1980; Bleris, Nouet, Hag~ge & Delavignette, 1982). 
This last paper, which will be referred to as BNHD, 
uses an axis-angle description in lattice coordinates 
for the rotations, which turns out to be convenient 
for deriving the coincidence rotations. 

BNHD and a recent paper by Hagbge & Nouet 
(1985) have stimulated the present investigation 
because we have found that the two different rules 
proposed for determining the multiplicity ~ do not 
always give the correct result. The main purpose of 
the present investigation is to derive universaEy valid 
methods for determining Y. At the same time, some 
gaps are filled in the derivation of the BNHD method 
to find the coincidence rotations and some arguments 
are simplified. 

Some of the results on coincidence rotations includ- 
ing the first method of determining ~ have already 
been presented without complete proofs in two pre- 
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